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Abstract Distribution data are central to many

invasion science applications. The shortage of good

information on the distribution of alien species and

their spatial dynamics is largely attributable to the

cost, effort and expertise required to monitor these

species over large areas. Virtual globes, particularly

Google Earth, are free and user-friendly software

which provide high-resolution aerial imagery for the

entire globe. We suggest this has enormous potential

for invasion science. We provide suggestions and tools

for gathering data on the distribution and abundance of

invasive alien trees using visual interpretation of

Google Earth imagery, and propose how these data

may be used for a number of purposes, including

calculating useful metrics of invasions, prioritising

species or areas for management and predicting

potential distributions of species. We also suggest

various practical uses of Google Earth, such as

providing a tool for early detection of emerging

invasions, monitoring invasions over time, and to help

researchers and managers identify suitable field study

sites. Virtual globes such as Google Earth are not

without limitations and we provide guidance on how

some of these can be overcome, or when imagery from

Google Earth may not be fit for invasion science

purposes. Because of Google Earth’s huge popularity

and ease of use, we also highlight possibilities for

awareness-raising and information sharing that it

provides. Finally, we provide the foundations and

guidelines for a virtual global network of sentinel sites

for early detection, monitoring and data gathering of

invasive alien trees, which we propose should be

developed as part of a ‘‘citizen science’’ effort. There

has been limited use of virtual globes by invasion

scientists and managers; it is our hope that this paper

will stimulate their greater use, both within the field of

invasion science and within ecology generally.
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Introduction

An ever increasing number of species are being

moved, both intentionally and unintentionally, by

humans from their natural ranges to distant locations

(Levine and D’Antonio 2003). Species that success-

fully establish in these new locations can be problem-

atic because they can alter the structure and

functioning of ecosystems (van Wilgen et al. 2008).

Some invasive species lead to a loss of biodiversity

and ecosystem services (Perrings et al. 2005), and

ultimately to substantial economic costs (Pimentel

et al. 2000; Le Maitre et al. 2002). Trees represent a

special case of invasive alien species for a number of

reasons: alien trees were often intentionally intro-

duced for horticultural or forestry purposes (Richard-

son and Rejmánek 2011); there are often major

conflicts of interest in the growing of alien trees e.g.

many commercially important species are also inva-

sive species (Richardson and Rejmánek 2011; van

Wilgen and Richardson 2012); and alien tree invasions

are among the most costly invaders to manage because

trees generally produce high biomass and they impact

on ecosystem services such as water provision where

they invade grasslands and shrublands (Richardson

1998; van Wilgen et al. 2001; Le Maitre et al. 2002;

van Wilgen and Richardson 2012).

There is therefore considerable interest in being

able to assess the distribution of invasive alien trees

(IATs). Distribution data are crucial for many aspects

of invasion science including the prioritisation of areas

and species for management (e.g. Roura-Pascual et al.

2010), identifying areas that are most vulnerable to

invasion (Thuiller et al. 2005), calculating rates of

spread and detailing distribution patterns to under-

stand invasion dynamics and plan effective interven-

tions (Higgins et al. 2001; Osunkoya et al. 2012), and

identifying environmental and anthropogenic factors

associated with invasions (Castro-Dı́ez et al. 2011;

Gallagher et al. 2011). Because of their size, trees are

generally easier to map than most other groups of

invasive species, especially when they invade (as they

often do; Rundel et al. 2014) previously treeless

vegetation. Despite this advantage, accurate distribu-

tion data for invasive trees are difficult to acquire

because, to date, they have either been sourced from

field observations (e.g. Chytrý et al. 2009) or from

aerial products such as photographs or remote-sensing

products (Huang and Asner 2009). Unfortunately,

there is no systematic, low-cost protocol for measuring

the distribution and spatial arrangement of tree

invasions at different scales that managers and scien-

tists can use (Wilson et al. 2014). Field observations

are time-consuming and expensive and are therefore

usually only practical over small geographical areas

(Mumby et al. 1999; Kotzé et al. 2010). Aerial

photographs and remote-sensing products (obtained

directly from the satellite data providers) have the

benefits of being able to cover much larger areas,

being more easily repeatable, and much cheaper than

field observations. However, if aerial photographs are

obtained from flight surveys for specific research

projects or obtained from government or commercial

institutions that fly aerial surveys, or if remote-sensing

products are obtained directly from the satellite data

providers, they are often expensive to purchase,

require a high level of expertise to format and analyse,

and sometimes require software and hardware that are

beyond the budgets of managers and scientists,

especially in developing countries (Underwood et al.

2007). Invasion scientists, managers and organisations

with limited resources and technical expertise, there-

fore, would benefit from a simple and cheap method to

conduct assessments of IAT distributions and aspects

of their spatial ecology. Knowledge of IAT distribu-

tions and abundance can be useful for measuring

ecosystem impacts, determining areas with a high risk

of invasion, planning IAT management, monitoring

invasions over time, early detection of new alien tree

invasions and for raising public awareness of IAT

impacts.

Virtual globes provide free aerial imagery (aerial

photography and/or satellite imagery), which is

formatted and stitched together to build a 3D model

of the world that users can navigate in ‘‘virtual reality’’

(Butler 2006; Yu and Gong 2012). Virtual globes have

several advantages over most traditional 2D GIS

software, including the fact that they are generally

free, their ease of use, their limited need for local data

storage, better visualisation of geographic data (par-

ticularly of large datasets), and their capacity to

communicate and share information with the public

and the scientific community (Stensgaard et al. 2009;

Goodchild et al. 2012; Yu and Gong 2012). Most

virtual globes share a number of other features,

including the capacity for users to add and share their

own data, tools for distance and area measurement,

visualising topography, etc. (Yu and Gong 2012).
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A number of virtual globes currently exist, including

Google Earth (http://www.google.com/earth/index.

html), NASA World Wind (http://worldwind.arc.

nasa.gov), ArcGIS Explorer (http://www.esri.com/

software/arcgis/explorer/index.html) and many oth-

ers (see references in Yu and Gong 2012). Google

Earth (GE), launched in June 2005, is by far the most

widely-used virtual globe (Yu and Gong 2012) and,

consequently, will be the focus of this paper. However,

it should be noted that many of the features of GE

highlighted in this paper will equally apply to other

virtual globes. The popularity of GE is probably due to

its ease of use (Stensgaard et al. 2009; Goodchild et al.

2012; Yu and Gong 2012), stability (Aurambout and

Pettit 2008), and the ability to import, overlay and

visualise geographic data by converting to Keyhole

Markup Language (KML) file format (Stensgaard

et al. 2009; Goodchild et al. 2012; Yu and Gong 2012).

KML has become the standard format for virtual

globes, with conversion to this format possible in

software such as ArcGIS (ESRI 2009) and the R sta-

tistical package (R Development Core Team 2013).

The popularity and utility of GE is possibly also due to

the availability of high-resolution imagery (0.5 m

GeoEye and 4 m IKONOS; http://www.geoeye.com;

although many regions of the world only have imagery

with a resolution of 15 m; Landsat; http://landsat.usgs.

gov; Potere 2008), and because there are often images

for multiple dates available for any given location (GE

provides images from a number of data providers, and

many of these are continuously-updated satellite

images; Table S1). GE has been widely used by

ecologists, geographers, social scientists, palaeontol-

ogists and geologists for a wide range of tasks (e.g.

mapping bird nests (Hughes et al. 2011), assessing the

magnetic alignment of cattle and deer (Begall et al.

2008), verifying a global map of rain-fed croplands

(Biradar et al. 2009), measuring the quality of public

parks (Taylor et al. 2011), mapping landslides after

earthquakes (Sato and Harp 2009) and for disaster

management and response (e.g. http://giscorps.org)),

but its potential as part of a toolbox for studying the

full suite of spatial dimensions of phenomena such as

biological invasions has yet to realized.

The aim of this paper is to illustrate the utility of GE

as a tool in invasion science, particularly for under-

standing the dynamics of tree invasions. We highlight

a number of the possible uses of GE as a tool for

studying tree invasions and illustrate these uses by

way of three case studies. We also address some of the

limitations of GE for mapping and monitoring tree

invasions, and suggest how they might be overcome.

We expect that by promoting this low-cost, simple

approach to tree-invasion mapping, managers and

scientist across the globe will be able to start collecting

data of invasion processes that would otherwise have

not been spatially and quantitatively assessed.

A brief note on Google Earth imagery

Google Earth, as commercial software, is ‘‘targeted for

a mass market audience, and the key drivers are

market share and advertising revenue, rather than to

advance research’’ (Yu and Gong 2012). Probably as a

result, very little documentation is provided for almost

all aspects of imagery acquisition and manipulation

(e.g. who provides images and for where, how often

images are updated, how images are manipulated,

etc.), often making it more difficult for scientists to use

GE as a scientific tool. Below we discuss a number of

important features of GE imagery that we feel a

scientific user should be aware of. Firstly, georefer-

encing or orthorectification of images in GE is

currently not entirely accurate, which causes posi-

tional accuracy errors (Potere 2008; Benker et al.

2011; Yu and Gong 2012). Coordinates obtained from

imagery in GE have been found to be as far as 171.6 m

away from their actual location (in the horizontal

plane), although horizontal positional accuracies were

found to be much better in developed countries

(24.1 m root-mean-squared error) than in developing

countries (44.4 m root-mean-squared error; Potere

2008), and have been found to be as accurate as 2.64 m

root-mean-squared error in the Big Bend region of

Texas, USA (Benker et al. 2011). Secondly, the spatial

resolution of images is not only dependent on the

spatial resolution of the original image, but also on the

zoom level i.e. the altitude from which one views an

image. Currently GE limits the maximum number of

pixels a user can download to 1000 pixels (Google

Earth User Guide 2013). This means that only when a

user is zoomed into a relatively small area will they be

able to save an image at the resolution of the original

image. Thirdly, GE images only have three spectral

bands (red, green and blue), even if the original

imagery had more bands (e.g. GeoEye, which also has

a near-infrared band), and these bands have also been
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manipulated to improve the appearance of the image,

but the manner in which this is done is unknown and

unpublished (Google Earth Blog 2009). Fourthly, very

little metadata, other than the name of the image

provider and the date the image was taken, are

available for GE images. Metadata for SPOT and

DigitalGlobe images can be found using the informa-

tion from the layers provided in the ‘‘Layers panel’’

under the section labelled ‘‘More’’. SPOT metadata

are provided in a balloon for each image, and for

DigitalGlobe imagery taken between 2002 and 2010

one can obtain the ‘‘Catalog ID’’ for an image and

consult the DigitalGlobe ImageFinder (https://browse.

digitalglobe.com/imagefinder/main.jsp?) to obtain all

the metadata. Alternatively, for DigitalGlobe images

taken before 2002 or after 2010, one can use the

DigitalGlobe Google Earth Search Service (http://

geofuse.geoeye.com/landing/google-earth/) to find

images and their associated metadata. Finally, the

availability of GE imagery for different dates, and the

spatial resolution of these images, varies considerably

around the world. For the 11 sites from Supplementary

files 1 and 3 with alien tree invasions that are visible in

GE, we found that all sites had a minimum of three

images of different dates, and image spatial resolution

generally improved over time, with most sites having

1.65 m spatial resolution GeoEye-1 imagery (Table

S1). However, sites in the developed world (USA and

Australia) generally had more images than sites in the

developing world, and spatial resolution of images

was often as good for the oldest images as the newest

images, because these were aerial photographs (Table

S1). These issues have important implications for the

possible uses of GE for studying and monitoring tree

invasions, as we discuss in the sections below.

Possible uses of GE imagery for the study of tree

invasions

Mapping tree invasions

Several efforts have been made to delineate the

presence of IATs using moderate (10–100 m) and

high (\10 m) spatial resolution imagery (see Huang

and Asner 2009 for a recent review), some of which

are also available in a formatted form in GE (see Table

S1 for a census of imagery sources and spatial

resolution at notable tree invasion sites around the

world). This suggests that it might be possible to

delineate the presence of IATs using GE imagery, as

we discuss below in relation to the resolution of the

imagery available.

Two approaches for delineating IAT presence using

high spatial resolution imagery are possible: using

classification algorithms or visual interpretation. Clas-

sification algorithms rely on spectral and pattern

information to group pixels into different categories,

one or some of which will hopefully correspond to the

alien species one is trying to detect (Lass et al. 2005),

However, even the original, unformatted imagery

often only provides limited success for automatic

detection of IATs (Huang and Asner 2009), or is only

successful when the species of interest occurs in large

stands, has unique phenological patterns, and has high

spatial and spectral resolution (Huang and Asner

2009). For these reasons, and because the imagery

currently available in GE has been manipulated (as

described earlier, imagery has low spectral resolution,

and due to GE’s limitations on the number of pixels

one can save in an image, it is difficult to acquire high

spatial resolution imagery for large areas), GE imag-

ery is of limited value for delineating the presence of

IATs using classification algorithms.

Visual interpretation relates visual characteristics

of images, such as colour, texture, shape, size, shadow,

pattern, site, height and association, to real-world

objects on the ground (Joseph 2005). Although visual

interpretation is time-consuming, and interpretation

can vary between individuals, humans are able to

integrate all the above-mentioned visual characteris-

tics and make deductions in ways that are currently

impossible for any algorithm (Joseph 2005). Visual

interpretation to delineate the presence of IATs can be

aided by plant phenology (e.g. bright flowers at a time

of year when other species are not flowering), unique

spatial patterns of how an IAT occupies the landscape,

and large monospecific stands of an IAT (Huang and

Asner 2009). Visual interpretation of GE imagery can

be enhanced by a number of tools. For example, the

polygon tool allows users to manually delineate

canopy boundaries and save these in Keyhole Markup

Language (KML) format, the native format of GE.

Alternatively, the placemark tool allows users to

pinpoint the coordinates of individual trees, also with

the ability to save these in KML format. The capability

of viewing imagery from different dates also aids

in IAT canopy delineation. Trees are generally
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long-lived and the same individuals will consequently

often be visible in images acquired on a different date.

Therefore, a tree that is indistinct in one image (e.g.

due to shadows or poor image resolution), may be

more visible in an image acquired on a different day.

While moderate spatial resolution imagery (e.g.

Landsat, SPOT and ASTER) is of too low resolution to

delineate individual trees, it can be used to map IAT

canopy cover in certain circumstances. Canopy cover

is defined as ‘‘the proportion of the forest floor covered

by the vertical projection of the tree crowns’’ i.e. for an

individual tree, canopy cover is the area on the ground

that is encompassed by the boundaries that are

vertically below the outer edge of the tree canopy

(Jennings et al. 1999). Moderate spatial resolution

imagery (including free Landsat imagery) has been

successfully used to map landscape-scale changes in

tree (not necessarily alien) canopy using a variety of

indices calculated using information from different

spectral bands (e.g. Breshears et al. 2005; Bradley and

Fleishman 2008; Huang et al. 2009; Becker et al.

2013), suggesting that similar approaches could work

with the same or similar-resolution imagery from GE.

However, the low spectral resolution of GE imagery,

and the lack of information on how the spectral

information has been manipulated, probably limits

opportunities for using such approaches. Visual inter-

pretation, therefore, seems to be the more appropriate

approach for estimating IAT canopy cover with

moderate spatial resolution imagery from GE. Using

visual interpretation of GE imagery, canopy cover can

either be estimated by the area of the polygon used to

delineate the canopy boundary, or if canopy bound-

aries are indistinct, a grid with a resolution smaller

than the average canopy size can be projected onto a

GE image and canopy cover can be estimated by the

number of grid cells the canopy is seen to occupy.

Stand canopy cover would logically be the sum of

individual tree canopy covers within a predefined area.

We have suggested how one might use visual

interpretation to delineate individual IATs or IAT

canopies from moderate and high spatial resolution

GE imagery. However, visual interpretation is not

always an easy task, especially when trees are visually

similar to the natural, dominant vegetation (e.g. alien

trees in a temperate, broadleaf forest (Boschetti et al.

2007), or Acacia trees in a low shrubland (Stow et al.

2000). Furthermore, image resolution and quality is

highly variable in GE making detection of individual

trees or stands of alien trees difficult when these co-

occur with other vegetation types. As a rule of thumb,

users might reliably only attempt visual interpretation

when imagery is provided by DigitalGlobe or one of

the other high-resolution imagery providers to GE (see

Table S1). GE is continuously updating its image

coverage, slowly reducing low-resolution gaps. Other

issues, such as cloud cover and plant phenology

(seasonality of image capture), may also limit tree

recognition and mapping, and may be more problem-

atic in certain regions. Field verification of IAT

presence will be necessary when using visual inter-

pretation of GE imagery, at least for a subset of the

area(s) studied, and will logically be required for all of

the other applications of GE that we suggest below

(other than #5, ‘‘Sharing information online with other

users and promoting global networking’’), as they are

all dependent on IAT distribution information.

Delineating the distribution of individual IATs and

mapping IAT canopy cover can have a number of

important applications. Canopy cover is a good

estimate of species abundance and biomass and,

therefore, it can also be used as a crude metric for

indicating the magnitude of ecosystem impacts for

species recognized as ecosystem engineers such as

Acacia species and pines (Richardson and Rejmánek

2011). Such data are increasingly required to prioritize

areas for management intervention (Roura-Pascual

et al. 2009). Spatial information about IATs can have

other useful applications for science and management.

Locations of individual IATs can be used to extract

data for hypothesised drivers of IAT presence from

spatially-referenced layers within a GIS environment.

These can be used to test whether the presence of an

invasive species is associated with any environmental

or anthropogenic factors (e.g. Alston and Richardson

2006). Alternatively, these can be used to make

predictions of habitat suitability for an IAT species,

including niche modelling, which can be used for

locating areas with a high risk of invasion or priori-

tising management of IATs (Richardson and Thuiller

2007). It should, however, be noted that due to the

positional errors of GE imagery described earlier, the

exact locations of polygons and placemarks repre-

senting IATs may not be entirely accurate. This is not

necessarily problematic for the applications men-

tioned above, as IAT canopy cover is a relative

measure, and the other applications (e.g. niche mod-

elling) generally rely on coarse resolution
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environmental datasets, which have resolutions far

greater than the positional inaccuracies of GE imagery

(e.g. kilometres for the former, but hundreds of metres

for the latter). However, if the intended use of the IAT

location data generated using visual interpretation of

GE imagery requires high spatial accuracy, one could

attempt to manually georeference the GE image in GIS

software beforehand. One can use objects with known

locations (e.g. roads) to georeference an image, but

this will require having enough locations with precise

coordinates (which may not always be possible), and

having such points evenly distributed across the area

of interest. We illustrate how this might be done in our

second case study.

Measuring specific metrics of invasions

A number of useful metrics rely on knowing either the

distribution or abundance of an alien species (Wilson

et al. 2014). The distance an alien species has spread

from a source population can be useful for determining

whether the invasion process has progressed to a stage

at which recruitment is occurring outside of the parent

population, at which time the invasion process is

increasingly driven by propagule pressure of invading

metapopulations (Rouget and Richardson 2003) and

becomes much more difficult to manage (Higgins et al.

2000; Langdon et al. 2010). The relative abundance of

an alien species has been proposed as a useful metric

for identifying dominant alien species, environments

that are heavily invaded and/or susceptible to invasion,

and for predicting the progress of an invasion (Catford

et al. 2012). In addition to abundance, the spatial

pattern of invasive plant populations has been shown

to influence invasion progress (Higgins et al. 2001);

metrics such as the degree of aggregation, which can

be calculated from mapping individual trees, have

much potential in this regard.

By visually interpreting the imagery available in

GE (when this is of high enough spatial resolution),

and thereby identifying individual IATs and/or calcu-

lating canopy cover of these species, all of the metrics

we described above can be estimated. Spread distances

can be estimated using GE imagery by identifying the

source population of an IAT species (e.g. a plantation)

and measuring the distance between the source

population and individuals that have spread into

neighbouring vegetation (identified using visual inter-

pretation). This can either be done manually, using the

distance tool in GE, or by exporting the polygons or

placemarks representing identified IAT individuals,

and using tools available in a GIS environment. The

relative abundance of an alien species and spatial

pattern metrics such as the degree of aggregation will

require the exporting of polygons representing iden-

tified individual IATs to software such as (R Devel-

opment Core Team 2013). We illustrate how this

might be achieved in our case studies. All of the

abovementioned metrics are, however, dependent on

the positional accuracy of GE imagery, as described

earlier, and manual georeferencing of the imagery

may be necessary.

Monitoring tree invasions

With the availability of imagery for different dates,

and the promise of future imagery in GE (from

satellites such as GeoEye-1), tree invasions can be

spatially monitored over time. The rate of change in

IAT canopy cover can be used for prioritising

management efforts (Maxwell et al. 2009) and for

understanding the factors contributing to invasiveness

(Rouget and Richardson 2003), and is easily estimated

if suitable imagery is available for more than one date

in GE. Spread distances measured for more than one

date can be used to calculate rates of spread, and this

can be related to various characteristics of the invasive

species, such as its residence time and morphological

traits, to develop predictions of problematic species in

the future (Ahern et al. 2010). It may also be possible,

in some instances, to identify combinations of envi-

ronmental factors that trigger particular invasion

events by observing when an IAT species first spreads

beyond the boundaries of its source population

(Becker et al. 2013; Robinson et al. 2008). Multiple

observations, like this, for a given species at different

localities is useful for identifying key drivers of

invasion (Richardson et al. 2004).

When viewing images obtained on different dates it

is sometimes apparent that there is a shift in the

location of fixed objects (e.g. buildings, roads, moun-

tains), which is related to the inaccuracies in geore-

ferencing or orthorectification of images in GE,

resulting in positional inaccuracies, as described

earlier. We suggest that these spatial errors can be

accounted for, to some extent, by manually georefer-

encing images obtained on different dates in GIS

software using objects identifiable in all images and
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known to have fixed locations (e.g. roads, large

boulders or trees), although this does increase the

amount of time required to do these types of analyses

considerably.

Early detection and locating field sites

Early detection of newly-emerging invasions is often

more cost effective and ensures a much greater chance

of eliminating an invader than waiting for an alien

species to become highly abundant (Rejmánek and

Pitcairn 2002; Hulme 2006; Mehta et al. 2007).

Remote sensing has long been proposed and used as

an early detection tool (Hulme 2006). However,

remote sensing may have limited utility if a species

is ‘‘cryptic, small, scattered or highly mobile’’ (Hulme

2006). Invading trees are less likely to be difficult to

detect in this regard than other plant life-forms

because of their large size. Most tree species are

relatively slow-growing and slow to mature and so

should become visible in aerial imagery before they

start producing many propagules. Undoubtedly, field-

truthing should complement GE observations, espe-

cially when new invasions are being reported. There is

always a risk of false positives, especially in areas

where native species have similar visual characteris-

tics to the IAT species.

GE imagery may also be useful to invasion

scientists for identifying potential field sites.

Researchers may want, for example, to conduct a

study using sites where the full spectrum of IAT

relative abundance is represented. GE provides the

opportunity to remotely and cheaply characterise a

number of potential study sites in terms of the metric

the researcher is interested in (relative abundance in

this example), and select only the ones that match the

desired criteria. IAT managers may wish to identify

field sites for the purposes of management prioritisa-

tion e.g. selecting either sites that are the most or least

invaded for urgent clearing operations. All of this can

be done using GE imagery in a much more cost- and

time-effective manner than by either conducting field

assessments or purchasing aerial imagery. Scientists

can also share the locations of their study sites in a

much more accurate and straightforward manner by

uploading their field sites onto GE e.g. as placemarks

or in KML format. In the long-term it would be most

useful to have a central online repository for these

types of data, although this is currently beyond the

scope of the aims of this manuscript.

Sharing information online with other users

and promoting global networking

GE has been widely used to disseminate information

in a visually-appealing, informative and educational

manner. For example, Conroy et al. (2008) illustrate

how GE can be used for sharing paleontological

spatial information with people who have no back-

ground or familiarity with GIS. Spatial data layers can

be exported in KML format and easily opened by

anyone with GE on their computer, negating the need

for complicated GIS software (Conroy et al. 2008).

While there are nice examples of invasive species

distributions mapped onto GE imagery (e.g. http://

calweedmapper.calflora.org/), the use of GE itself for

sharing invasive species spatial data, to the best of our

knowledge, has only had limited applications to date.

We suggest that GE could be used much more widely

used for invasion science applications.

First and foremost it could be used for educational

or awareness-raising purposes to highlight the often

dramatic changes effected by tree invasions. There are

numerous examples around the world where the

spread of IATs is quite clearly visible in the aerial

imagery provided by GE. We have created a KML file

with some notable invasion sites to highlight the utility

of GE in this regard (Supplementary file 1).

Secondly, GE provides an excellent platform for

invasion scientists and managers to network and share

their results and data in the form of KML files. We

know of only a very few papers providing supporting

information in this format, but that number should

increase, given that this is such an easy and effective

way of visualising data and results. Global networks of

researchers and managers can benefit from the direct

transfer of data and results (see Pauchard et al. 2009,

Sagarin and Pauchard 2010), especially with the use of

an interactive platform such as GE. For example,

scientists studying tree invasions into treeless ecosys-

tems can compare a number of environmental attri-

butes across global sites if they have accurate positions

for such invasions, while managers can learn from

other regions where management actions have already

been conducted (see e.g. Kueffer et al. 2013). To

highlight the effectiveness of using the KML format,
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we have provided supplementary KML files for all of

our case studies.

Thirdly, monitoring and/or sharing of information

on IATs can be achieved using cloud-based GIS

servers (e.g. ArcGIS server, GeoServer) that integrate

the capabilities of virtual earth applications such as GE

with more advanced GIS tools, all accessible online.

This sort of approach has been used, for example, for

developing an online monitoring system for transmis-

sible diseases (Yang et al. 2012). This approach holds

great promise for gathering and sharing information

on alien species in general, but requires a high level of

technical expertise and an in-depth review of this

approach is beyond the scope of this paper.

Sentinel sites

We have already established the utility of GE in

detecting newly-emerging tree invasions and moni-

toring IAT spread over time. We propose that these

capabilities allow for the establishment of a global

network of ‘‘sentinel sites’’ for detecting invasions of

IATs at an early stage of the invasion process and

monitoring the spread of IATs. The idea of having a

network of sentinel sites for monitoring or detecting

biological changes or phenomena is not new and has

been most widely applied to monitoring the spread of

infectious diseases (e.g. Freedman et al. 2008; Sserw-

anga et al. 2011), but has also been used for detecting

the spread or arrival of alien species (Meyerson and

Mooney 2007) and a national system for detecting

emerging plant invasions in the United States was

proposed (Westbrooks 2003), but never enacted. The

idea behind most sentinel networks is to have a

relatively small number of sites spread across a broad,

but defined geographical area, at which detailed

analyses can be made in order to detect the biological

change or phenomenon in question or to indicate

changing trends which could trigger management

interventions. Such a network, at the global scale, has

previously been proposed ‘‘to monitor reproduction

and regeneration dynamics of alien species’’, espe-

cially alien tree species growing in plantations or

arboreta (Richardson and Rejmánek 2004).

The amount of introduction effort, which ultimately

contributes to the amount of propagule pressure, has

been identified as a principal driver of new invasions

(Huang et al. 2012) as have sites of likely entry for an

invasive species (Hulme 2006). Plantations of alien

trees have been a major source of IAT invasions

(Richardson and Rejmánek 2011; Dodet and Collet

2012), and should form part of any proposed sentinel

site network. Other areas that are likely to act as

sources of propagules and sites of entry for new

invasions are areas of human habitation where gardens

have been established (Alston and Richardson 2006),

and experimental plantings, arboreta or botanical

gardens containing alien species (Hulme 2011).

Google Earth provides us with the perfect tool to set

up such a global sentinel site network for IATs,

because imagery is continuously being updated, it is

free and low-tech and, as shown in this paper, is a

useful tool for detecting IAT invasion and provides

valuable information on the ecology of IATs. In

addition, the popularity of GE could enable monitor-

ing of this network of sentinel sites as part of a ‘‘citizen

science’’ effort (Silvertown 2009). As described

earlier, data sharing via KML files is simple and

would allow for easy sharing of locations of sentinel

sites. In addition, GE already has the capacity for users

to upload photographs (via Panoramio; www.

panoramio.com), which would allow for more accu-

rate species identification and verification. The other

useful tool in GE which could be used in some

instances for verification and identification purposes is

Google Street View, which gives on-the-ground

imagery for sites close to roads, although this is only

available for a limited number of countries, and most

extensively in urban areas. Up-to-date monitoring of

sites can also be achieved by signing up to receive

updates from Google as to when new imagery

becomes available in GE for registered locations

(https://followyourworld.appspot.com/dashboard).

Such a global network would obviously be limited by

the biases in the availability of high resolution imagery

in GE, but as previously mentioned, continuous

updates from satellites such as GeoEye-1 should lead

to ever greater availability of high spatial resolution

imagery for all parts of the globe.

We believe that such a sentinel site network will

help to: (1) identify emerging trends in IAT invasions;

(2) provide valuable locality information for particular

IAT species; (3) monitor changes in IAT species

abundance and distribution over time; (4) help ensure

legislative compliance of land managers and planta-

tion owners; and (5) track management efforts over

time. Such a network of sentinel sites might be

established by identifying sites close to alien-tree
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propagules within a GIS framework using, for exam-

ple, land-cover classifications, which include catego-

ries for alien tree plantations and urban areas (see case

study 3). Alternatively or complimentarily, the net-

work might be grown over time from sites suggested

by GE users.

Case studies for illustrating the utility of Google

Earth in invasion science

Case study 1: Pinus contorta invasions in southern

Chile

Afforestation using alien tree species has rapidly

expanded in the last century (Sedjo 1999), with pine

(Pinus) species being among the most commonly

planted species (Richardson 1998; Sedjo 1999; Rich-

ardson and Rejmánek 2011). A number of pine species

have become highly successful invaders in many parts

of the globe (Richardson 1998; Richardson and

Rejmánek 2011), have a wide range of impacts (e.g.

Richardson and van Wilgen 2004), and have been the

target of substantial control efforts (e.g. van Wilgen

et al. 2012). Pinus contorta is one of the most invasive

pine species, being recorded as invasive in Argentina,

Chile, Australia, New Zealand and Sweden (Langdon

et al. 2010). P. contorta was only introduced relatively

recently into Chile as a plantation species (*1970s)

and therefore little is known about the spread of this

species into native grassland and steppe vegetation

(Gundale et al. 2014). Invasions of this species and

other conifers have lagged behind such invasions in

many other parts of the southern hemisphere because

of the shorter history of plantings for forestry (Rich-

ardson et al. 2008). Langdon et al. (2010) conducted

field surveys next to five different plantations of P.

contorta in southern Chile in order to determine

whether first-generation invaders (i.e. recruits from

plantations) were reproducing and thus contributing to

the spread of the species, or whether recruitment was

still predominantly from plantation trees. We compare

the numbers of P. contorta individuals recorded at one

of the Langdon et al. (2010) study sites, near the city of

Coyhaique in southern Chile, with those obtained

using GE imagery.

Langdon et al. (2010) originally laid out three

150 m transects at this study site, but due to the

inaccuracies associated with GPS measurements and

with the horizontal positional accuracy of GE images

(as described earlier), we were unable to ascertain the

exact location of these transects in GE. We therefore

adopted a different approach, creating 32 ‘‘virtual’’

transects around the presumed location of the original

field transects (i.e. 16 9 3 m wide transects either side

of each straight line joining the GPS measurements

representing the three transects laid out by Langdon

et al. (2010)). Our virtual transects were created in R

(R Development Core Team 2013) using 150 m long

polylines perpendicular to the edge of the P. contorta

plantation, with the transects further subdivided into

subtransects 10 m long (which is the same distance

Langdon et al. (2010) used for their subtransects;

Supplementary file 2). Within the area encompassed

by these ‘‘virtual’’ transects, we used GE imagery

taken on 28 February 2010 (the date closest to January

2009 when the field measurements were obtained;

Image supplied by DigitalGlobe, IKONOS-2; 4 m

spatial resolution) for visual interpretation in order to

identify P. contorta individuals. Trees were generally

identifiable against the native grassland matrix by

circular patches with a slightly different colour to the

surrounding vegetation, and a shadow on the SW side

of these patches. Using the polygon tool in GE, we

outlined what we identified as the canopy boundary of

P. contorta trees and saved these in KML format

(Supplementary file 2). In Quantum GIS (QGIS;

Quantum GIS Development Team 2012) we used the

‘‘Join attributes by location’’ tool to calculate the

numbers of polygons (i.e. P. contorta individuals) in

each subtransect.

The mean number of GE-delineated trees per

transect (i.e. the mean of the 32 virtual transects for

each 10 m subtransect) exhibited a positive associa-

tion with the field-counted number of trees of Langdon

et al. (2010) (Fig. 1a, b). However, for higher densities

of trees, we under-estimated the actual number of trees

in the field (Fig. 1a, b). These high density subtran-

sects appear to be those close to the plantation edge

(point size is proportional to distance from plantation

edge in Fig. 1a) and those with tall trees (point size is

proportional to tree height in Fig. 1b; height of the

tallest tree in each subtransect was recorded by

Langdon et al. (2010)). This suggests that we were

unable to detect smaller trees beneath the canopies of

larger trees close to the plantation edge. However, we

found a similar decline in tree numbers towards the

end of the 150 m transects using GE imagery as was
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found with the field transects (Fig. 1c). Inspection of

the study area in GE indicates that there are very few

P. contorta trees further than 150 m from the planta-

tion edge. These results suggest that using GE imagery

for counting individual trees will only work for

counting large, mature trees that occur in low to

intermediate densities, but will always underestimate

the numbers of juveniles, especially when these occur

under the canopies of larger trees. It is also worth

noting that the spatial resolution of the imagery for the

study location was only 4 m and that higher resolution

imagery (e.g. from the GeoEye-1 satellite, with a

spatial resolution of 0.5 m; Table S1) would probably

enable us to make more accurate counts of tree

numbers. In a study of Melaleuca invasion in Florida,

also using 4 m spatial resolution IKONOS imagery,

but using neural network classification, it was found

that this method was unable to identify individuals or

stands of Melaleuca when canopy cover dropped

below about 50 % of the pixel (Fuller 2005). Other

studies using similar high-resolution imagery have had

similar results when canopy cover of the IAT under

study is less than 50 % of the pixel (Asner and Huang

2011). This case study reiterates our earlier points

about ‘‘mapping tree invasions’’ (section ‘‘Introduc-

tion’’) in that moderate spatial resolution GE imagery

is probably better suited to measuring canopy cover,

rather than numbers of individual IATs. Visual

interpretation for counting the number of IAT indi-

viduals is, therefore, probably better attempted with

imagery of very high resolution (e.g. 0.5 m GeoEye-1

imagery) and only when one is interested in the

(a)    (b)    

(c)    (d)    

Fig. 1 a, b A comparison of the number of trees counted in the

field around Coyhaique city, Chile, by Langdon et al. (2010) and

those identified using GE imagery. Point size in a is proportional

to the distance from the plantation edge and in b to the height of

the tallest tree per substransect. The solid line in a and

b represents the linear fit between the field- and GE-counted

numbers of trees (y = 0.084x ? 1.251; r2 = 0.31; p \ 0.05)

and the dotted line represents a 1:1 fit between these variables.

c Numbers per subtransect of Pinus contorta trees across the

150 m length of the field transects (open circles are means per

subtransect of the three field-based transects; dotted line is the

linear fit: y = -0.062x ? 8.514; rr = 0.78; p \ 0.001) and of

the virtual transects conducted in GE (closed symbols are means

per substransect of the 96 virtual transects; solid line is the linear

fit: y = -0.005x ? 1.956; r2 = 0.23; p = 0.07). Error bars

represent 95 % confidence intervals. d A comparison between

2004 and 2010 of the numbers per subtransect of P. contorta

trees across the 150 m length of the field transects. Solid symbols

and lines are as for c. Open circles are the 2004 means per

substransect and the dotted line is the 2004 linear fit (y =

-0.002 ? 0.558; r2 = 0.62; p \ 0.001)
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number of mature trees i.e. not trees with a canopy

extent smaller than the image spatial resolution.

To demonstrate the utility of GE in monitoring

invasions over time, we performed the same visual

inspection of GE imagery and delineation of P.

contorta trees for an image taken on 25 December

2004 (Image supplied by DigitalGlobe; IKONOS-2;

4 m spatial resolution). It should be immediately

obvious when viewing the study area in GE for this

date that objects are displaced further to the NE than in

the 2010 image. To correct for this, we georeferenced

the 2004 P. contorta polygons to the 2010 image in

QGIS (Quantum GIS Development Team 2012) using

trees that were identifiable in both images as reference

points. A comparison of the numbers of P. contorta

trees in 2010 with those in 2004 reveals a large overall

increase in the mean numbers of these trees in the

intervening period (Fig. 1d). We visualised the change

in numbers of P. contorta trees per subtransect

between 2004 and 2010 in GE as a KML file using

the free software, shp2kml 2.0 (http://zonums.com/

shp2kml.html; Supplementary file 2), and provide it as

a figure in this paper (Fig. 2). This gives us a much

clearer perspective of the patchy pattern of increasing

abundance of P. contorta than Fig. 1d would suggest

(Fig. 2; Supplementary file 2). It also supports our

hypothesis that we are unable to accurately count trees

at high densities, because the largest decreases in P.

contorta numbers occurred in the third transect in an

area of obviously high tree abundance in 2010 (Fig. 2;

Supplementary file 2). This visualisation shows how

one can easily display results in an attractive format in

GE. Overall, this case study highlights the utility of

GE for analysing trends in the abundance (numbers of

individuals or canopy cover) of IATs over time,

although our results suggest that this approach works

better for measuring IAT canopy cover, because we

tended to underestimate numbers of individual IATs

when these were small and/or when these occurred

beneath larger trees. However, it also illustrates how

much more easily one can remotely characterise an

invasion for a much broader area than would be pos-

sible in the field, especially for remote regions with

difficult access, such as Patagonia. Therefore, such a

method could be adopted, as a first approach, by

companies and NGOs to remotely assess levels of tree

invasions, especially in areas certified under environ-

mental standards such as the FSC (Forest Stewardship

Council).

Case study 2: Acacia dealbata invasions in central

Chile

Acacia dealbata (Silver wattle) is native to SW

Australia and Tasmania and has been widely intro-

duced into other parts of the world for forestry and

150 m 

Transect group 1 

Transect group 2 

Transect group 3 150 m 

150 m Plantation edge 

Fig. 2 The change in numbers of Pinus contorta trees around

Coyhaique city, Chile, per 10 9 3 m subtransect between 2004

and 2010 determined by visual inspection of imagery from GE.

For each of the three field transects conducted by Langdon et al.

(2010), we created 32 virtual transects measuring 150 9 3 m

starting at the plantation edge and heading outwards perpen-

dicularly from the edge, resulting in three ‘‘transect groups’’ (see

case study 2 for more details). This same figure (in colour) is

provided as a KML file in Supplementary file 2. Decreases

between 2004 and 2010 in the number of trees identified in a

10 x 3 m subtransect are represented by white to light grey;

increases by darker grey to black. White areas outside of each

group of 32 transects were not included in this analysis
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ornamental purposes, and has subsequently become

invasive in California, Portugal, New Zealand, Mad-

agascar, South Africa and Chile (Underwood et al.

2007; Richardson and Rejmánek 2011; Richardson

et al. 2011). A. dealbata produces abundant yellow

flowers mid-winter and this phenological characteris-

tic has been used to successfully identify and measure

the canopy cover of this species in forest and riparian

habitats in Chile using very high resolution aerial

photography (Pauchard and Maheu-Giroux 2007). We

investigated whether it is possible to accurately assess

the canopy cover of this species using GE imagery,

comparing our results with those obtained using aerial

photos for a study site along the Rio Ñuble near the

city of Chillán in central Chile (Lab. de Invasiones

Biológicas (LIB), unpublished data).

Using this colour aerial photography (with a

1:20,000 resolution) and visual photointerpretation,

the presence or absence of A. dealbata trees in flower

was determined in 10 9 10 m cells of a 2 9 2 km

grid, with the ultimate finding that this species is

highly abundant along riverbanks in the study site. We

include a correctly georeferenced KML file of these

unpublished results as a supplementary attachment,

which, once opened in GE reveals that there is an

obvious horizontal displacement of the imagery in GE

towards the south (Supplementary file 3). Unless this

displacement is corrected, it would be impossible to

compare results obtained from GE imagery with those

from the aerial photos. The approach we took to

address this issue was to save the GE image for 9

March 2010 (the date closest to August 2009 when the

aerial photograph was taken; Image provided by

DigitalGlobe; IKONOS-2; 4 m spatial resolution)

and georeference this image in QGIS (Quantum GIS

Development Team 2012). We used four control

points, as close as possible to the corners of the image,

and the default thin plate spline transformation and

nearest neighbour resampling method in the Georef-

erencer plugin of QGIS to georeference this image.

Rather than use a grid-based approach for identi-

fying the presence of A. dealbata trees as used with the

aerial photos, we used a polygon method similar to

that described in the first case study (i.e. Pinus

contorta in Chile) to identify stands of this species.

Because we were more interested in measuring canopy

cover than numbers of individuals of this species, we

used polygons to define the boundaries of dense stands

of A. dealbata rather than of individual trees.

However, we did not use the polygon tool in GE, but

rather conducted this visual interpretation of the GE

image in QGIS. The reason for adopting this approach

was that we know of no easy method to georeference a

vector type file, like the polygons created in GE. The

disadvantage of this approach is that the saved GE

image will have its resolution fixed at the maximum

allowed by GE for saved images and not by the

resolution of the original imagery, as is the case if one

were viewing the image in GE. Therefore, the saved

image will have a coarser resolution if one zooms into

a smaller portion of the image and this approach will,

consequently, work much better for images with a

smaller spatial extent. Alternatively, a combined

approach could be used, in which areas with doubtful

photointerpretation can be zoomed into using GE, and

the interpretation can be conducted using the fixed

image. For this reason, we focussed our analysis of GE

imagery to a number of islands in the Rio Ñuble,

representing a very local scale. We also focussed on

this specific area because these islands appear to be

highly dynamic over time and a cursory inspection of

the historical imagery in GE suggested the distribution

of A. dealbata on these islands has changed consid-

erably over time. To study these temporal changes, we

georeferenced a GE image taken on 10 September

2003 (Image provided by DigitalGlobe; IKONOS-2;

4 m spatial resolution) and performed the same

A. dealbata identification procedure using polygons

to delimit stands of this species. We then estimated the

presence or absence of A. dealbata in each of the

10 9 10 m grid cells using the QGIS ‘‘Join attributes

by location’’ tool.

If we regard the image classification using the high-

resolution aerial photography as a true estimate of the

cover of A. dealbata, the classification performed

using the 2010 GE imagery shows a high level of

accuracy (Accuracy = 84.4 %; Table 1) and low

omission error (false absences; 4.49 %; Table 1).

However, there was high commission error (false

presences; 53.5 %; Table 1) and the Kappa statistic

indicated moderate agreement between the GE-based

classification and the high-resolution-aerial-photogra-

phy classification (j = 0.588; Table 1). The high

commission error (831/1553 grid cells; i.e. a large

number of false positives) is as a result of us estimating

a far greater number of grid cells to be occupied by

A. dealbata based on the 2010 GE image than that

estimated using the aerial photographs. We suggest
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that this is because our classification perhaps more

closely represents the area occupied by all tree species,

and not just of A. dealbata. It is almost impossible to

distinguish between tree species using imagery, such

as that available from GE, which has low spectral

resolution but, as in this case, high spatial resolution

unless the species one is trying to identify has a distinct

flowering phenology and/or spatial pattern (Huang and

Asner 2009; Asner and Huang 2011). A. dealbata does

in fact have a distinct flowering phenology, with

abundant yellow flowers in winter, but the GE imagery

for 2010 was taken at the wrong time of year (March)

to see this. One may notice that the GE imagery

available for 10 September 2003 (in the austral spring)

shows hints of the yellow flowers characteristic of A.

dealbata, but is not of high enough spatial resolution

to accurately delineate canopies of this species. The

identification of A. dealbata in the high-resolution

aerial photograph relied on the visibility of their

yellow flowers, but we argue that younger trees are

unlikely to be identifiable in this manner because they

are smaller and produce no/fewer flowers, suggesting

that the estimated cover of this species obtained using

these images is an underestimate. We know from field

observations that A. dealbata is in fact the most

abundant woody plant in this area, although there are

also native riparian tree species. GE has clear advan-

tages in terms of costs compared to the high-resolution

aerial photography and, therefore, can serve to

estimate the cover of Acacia dealbata at local scales,

including some field-truthing to adjust for error or bias

in the visual estimation. However, our results also

highlight the difficulty of mapping canopy cover of

IATs invading areas where native trees are also

present, and as we suggested in the previous case

study, using GE imagery for mapping IAT distribu-

tions is likely to be most useful in ‘‘treeless’’

vegetation types such as grasslands, steppe, etc.

Time-series measurements of IAT canopy cover

change, however, possibly present a much more

successful use for GE imagery. For example, at our

study site, a comparison of the 2003 GE image with

that of 2010 shows that there have been substantial

changes to the sizes and positions of some of the river

islands between 2003 and 2010 (Fig. 3a, b). Accord-

ing to our polygon delineations of stands of A.

dealbata in 2003 and 2010, we found that while the

overall area occupied by this species changed very

little from 2003 (0.114 km2) to 2010 (0.106 km2),

there was an increase in abundance of this species on

the northern edges of a number of the islands and on

some of the previously unoccupied sandbanks of 2003

(Fig. 3a, b). It appears as if this species is able to

rapidly colonise areas in the river that have only

recently stabilised, such as the sandbanks in the

northern branch of this river. We provide a KML file

showing the changes in the presence or absence of A.

dealbata between 2003 and 2010 based on the

10 9 10 m grid cells used with the aerial photographs,

which we georeferenced back to the 2010 GE image.

White indicates stable presence between 2003 and

2010, blue indicates presence in 2003, but not 2010,

and red indicates presence in 2010, but not 2003

(Supplementary file 3). Our results suggest that,

together with a priori knowledge of the presence of

an IAT species invading native vegetation that

includes a considerable native tree component, time-

series analysis of GE images can help to measure how

and where change occurs over time.

Case study 3: Designing a sentinel site network

for the Western Cape of South Africa

In our proposal for the requirements of an IAT sentinel

site network, we suggested that sites in the network

should be close to sites of alien tree propagules.

Plantations of alien tree species are likely to act as a

major source of new invasions (Richardson and Brown

1986; Richardson and Rejmánek 2011; Dodet and

Collet 2012) and should therefore form a major part of

any IAT sentinel site network. Of the alien species

used in commercial plantations, the most commonly

planted species are from the genera Eucalyptus

Table 1 Accuracy of Acacia dealbata presence/absence

classification for a Google Earth image of a study site along the

Rio Ñuble near the city of Chillán in central Chile compared to

presence/absence data obtained using a high-resolution aerial

photograph

GE classification High-resolution, aerial photograph

classification

Presence Absence Row total

Presence 722 831 1,553

Absence 34 3,956 3,990

Column total 756 4,787 5,543

Accuracy = 84.4 %; Omission error = 0.9 %; Commission

error = 53.4 %; Kappa = 0.588
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(eucalypts) and Pinus (pines), particularly in South

Africa (Richardson 1998; Sedjo 1999; Rejmánek and

Richardson 2011). Many more pine species have

become invasive than eucalypt species (Rejmánek and

Richardson 2011; Richardson and Rejmánek 2011;

van Wilgen and Richardson 2012) and in the fynbos

shrublands of South Africa, pines are aggressive

invaders, whereas eucalypt species tend not to be

(Forsyth et al. 2004; van Wilgen and Richardson

2012). We used a recent national land cover classifi-

cation for South Africa (NLC 2000; Fairbanks et al.

2000) to identify plantations of eucalypts and pines in

the southwestern part of the Western Cape. This land

cover classification is based on Landsat TM imagery

taken between 1994 and 1996 and the classification

was done via manual photo-interpretation (Fairbanks

et al. 2000). We limited our analysis to plantations

larger than 90 ha in size as we found that there was

substantial misclassification of smaller pine planta-

tions (possibly because of the coarse resolution of the

NLC2000, which is intended for uses with a minimum

mapping unit of 25 ha; Fairbanks et al. 2000). We

visually inspected the NLC2000 plantations in GE and

removed those that were incorrectly classified. For the

remaining plantations, we found that plantation

boundaries according to the NLC2000 were largely

incorrect and so we redrew the boundaries, using GE

imagery as a guide to the limits of planted areas, often

relying on historical imagery to identify recently felled

plantation areas, which were included within the

plantation boundaries. To limit the extent of our

sentinel sites, we created a 200 m buffer area around

our redrawn plantations and projected this onto GE as

a KML file (Supplementary file 4). We then visually

inspected all of these sites in GE, recording: (1) the

year of the earliest and most recently available

Fig. 3 Stands of Acacia dealbata along the Rio Ñuble near the

city of Chillán in central Chile as seen in georeferenced Google

Earth imagery from 2003 (a) and 2010 (b). Green lines show our

visual interpretation of the boundaries of A. dealbata stands in

2003 and blue lines the boundaries in 2010
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imagery in GE; (2) the presence of plantation species

recruits beyond the plantation boundaries, but still

within the 200 m buffer area, in the most recently

available imagery; (3) a qualitative estimation of the

area occupied by these recruits; (4) presence of

recruits in the oldest GE imagery; (4) evidence of

clearing activities in imagery of any date; (5) a

qualitative assessment of the change in area occupied

by plantation species recruits between the oldest and

most recent imagery; (6) whether forestry activities

were ongoing in the most recent imagery; (7) a

qualitative assessment of the amount of invasible land

nearby; (8) the names of the image providers (and

satellites when we could ascertain this) for the earliest

and most recent images; (9) the spatial resolution of

these images; and (10) whether Google Street View or

Panoramio images that help to identify the invading

species were available.

Based on our redrawn boundaries we identified a

total of 33 large plantations within the study region,

seven of which were planted with eucalypts, 23 with

pines, and three with a mixture of pines and eucalypts

(Table 2; Supplementary file 4). We relied partially on

the NLC2000 classification for identifying the species

planted, but where we had doubts about this classifi-

cation we attempted to identify the planted species

based on GE imagery or using Google Street View

(available for 28/33 sites) or georeferenced Panoramio

photos (available for 19/33 sites). We had great

difficulty in defining the plantation boundaries for

many sites. This highlights a major issue in that there

is no up-to-date national inventory of plantations for

South Africa, making it difficult to provide objective

assessments of whether managers are controlling

invasions around their plantations. Nonetheless, we

identified recruitment within the buffer area for 21 of

the 33 plantations (Table 2; Supplementary file 4),

however with most invasions being relatively small

(14 sites), although two were identified as being of

intermediate size and six as being extensive (Table 2;

Supplementary file 4). We found no difference

between eucalypt and pine plantations in this regard

with approximately half of the sites of either species

showing evidence of recruitment in the buffer zone

(pine = 14/23 sites; eucalypt = 4/7 sites; mixed =

3/3 sites; Fisher’s exact test, P value [ 0.05; Table 2;

Supplementary file 4) and pine sites exhibiting no

significantly greater increases in the area occupied by

recruits between the oldest and most recent GE

imagery (Increase: pine = 9/19, eucalypt = 1/7;

Fisher’s exact test, P value [ 0.05; Table 2; Supple-

mentary file 4). In almost a quarter of the sites

invasions were not detected in the earliest GE imagery

available, but were present in the most recent imagery,

although it is possible that IATs were not detected in

the earlier imagery because of the lower spatial

resolution of these images relative to the most recent

images (Generally 2.62 m for the earliest images, but

as low as 4 m, compared to 1.65 m for the most recent

images for all sites; Table 2). All except three of the

pine sites appear to be on-going operations (Table 2;

Supplementary file 4), suggesting continued monitor-

ing will be necessary, although even the plantations in

which planting has ceased, monitoring will need to

continue due to the large seedbank that is probably

present. A qualitative assessment of the area of

neighbouring land suitable for invasion by plantation

species revealed that all except two sites had large

areas that were potentially invasible (Table 2; Sup-

plementary file 4), highlighting the importance of

continued monitoring of these sites. Very few of the

identified invaded areas for each site appear to have

had extensive clearing operations in the period

between the earliest and most recently available GE

imagery (lots of clearing = 3; some = 8; none = 10;

uncertain or no invasions present = 12; Table 2;

Supplementary file 4).

The results described above, however, have not

been validated with field-based observations and so

should be treated with some caution. As the results

from the previous two case studies show, it is not

always possible to accurately map or identify IATs

from GE imagery, and we cannot always be certain of

detecting IAT spread from plantations, particularly for

young trees and when image spatial resolution is too

low (spatial resolution also tends to be poorer for older

images, as was the case for our sentinel sites; Table 2).

Such a network would, therefore, require field valida-

tion of some of the results. However, these results

highlight the diverse and useful information that could

be generated by a sentinel site network. For example,

we were able to remotely and cheaply monitor

invasions over time, get a rough estimate of invaded

area and potentially invisible area, and validate or

determine the species planted and/or invading using

Google Street View or Panoramio photos. We suggest

that with public input to monitoring such sites it could

be possible to monitor a much larger area, providing a

Unlocking the potential of Google Earth 527
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cheap method for organisations such as the Forestry

Stewardship Council to ensure plantations of IATs are

being effectively managed and also providing an early

warning system for new invasions.

Conclusions

We have demonstrated how GE can be used for a

number of invasion science applications including,

generating information on the distributions, ecology

and management of invasive alien trees, as well as

providing a tool for early detection, monitoring,

information sharing and awareness raising of these

species. We also highlighted some of the problems

with using GE in these ways, such as low resolution

imagery, relatively few images for different time

periods, incorrect georeferencing of images, and low

spectral resolution of imagery from GE. This may lead

one to question the utility and reliability of GE for the

above-mentioned purposes. Depending on one’s goals

and budget it may be preferable to rely on other

sources of aerial imagery, but for many researchers

and managers, particularly in the developing world,

GE (and other virtual globes) will be the only

affordable option for obtaining high-resolution imag-

ery. In addition, many of the current problems with GE

imagery are likely to disappear or diminish in the

future as the imagery and algorithms used to process

them improve.

Observational approaches to ecology, such as we

have demonstrated, have a long history dating back to

the great naturalists such as Charles Darwin, and have

the distinct advantage over experimental approaches

in that research can be conducted across large spatial

and temporal scales, and in situations that cannot be

manipulated easily or ethically (Sagarin and Pauchard

2010). Recent advances in areas such as remote

sensing and computing have greatly enhanced the

capabilities of observational approaches (Sagarin and

Pauchard 2010) and we suggest that GE, and other

virtual globes, are an excellent case in point. While we

have demonstrated the capabilities of GE for invasion

science purposes, and for studying invasive alien trees

in particular, the types of approaches we have

proposed could have a wide range of applications for

ecology in general. We demonstrated how one can

acquire distribution, abundance and spatialT
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information on IATs from GE, but any species or

environmental feature that is easily identified in aerial

imagery can be mapped and tracked over time. With

its large number of users, GE provides an amazing tool

for ecological education and awareness-raising, and

there are already excellent examples that highlight

human-induced, environmental changes, and the

plight of endangered species, among others (http://

www.google.co.za/earth/outreach/index.html).

However, there are a number of impediments to a

major uptake of GE, and other virtual globes, for

scientific use. Metadata and the procedures used to

format imagery are often unavailable, which severely

limits the utility of GE imagery. This may be due to the

fact that most imagery is ‘‘the property of governments

and corporations’’, who restrict the terms of their use

(Goodchild et al. 2012). As stated by Goodchild et al.

(2012), there are strong arguments for increasing

access to these types of data, not the least of which

being that they can help to understand and alleviate

major global issues, such as alien tree invasions. Some

of this research will depend on citizen science, such as

we suggested for sentinel site monitoring of IAT

invasions, but there are also concerns over the quality

and structure of data gathered in this way, and methods

for addressing these concerns are likely to become

increasingly important (Goodchild et al. 2012).

Related to this, technology and methods for storing

data derived from and generated for virtual globes will

need to improve drastically in order to cope with the

ever increasing amounts of data being generated

(Goodchild et al. 2012). Another major impediment,

particularly for scientists, is the lack of analytical tools

in virtual globes, especially being able to link and

extract information from disparate datasets (Good-

child et al. 2012). While free 2D-GIS software with

extensive analytical capabilities, such as QGIS (Quan-

tum GIS Development Team 2012), allow users access

to some remote-sensed imagery, and virtual globes

like ArcGIS Explorer have some analytical tools, the

gap between 2D and 3D GIS is still large. Neverthe-

less, continued improvements to virtual globes should

allow an ever greater number of scientific applications.

Shortly after the launch of GE, Butler (2006) predicted

that virtual globes such as Google Earth would change

‘‘the way we interact with spatial data’’ and it is our

hope that this paper will aid this process by encour-

aging invasion scientists and managers to seize the

opportunities in Google Earth for their work.
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