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Foreword

The challenging issue of global biocultural homogenization is comprehensively 
presented and discussed in this important book – and its arrival is none too soon! 
Biocultural homogenization, as defined by Rozzi et al. in the first chapter of the 
book, “entails the interwoven losses of native biological and cultural diversity at 
local, regional, and global scales.” This issue of biocultural homogenization is nei-
ther widely understood nor is its importance adequately appreciated even while it is 
occurring at an accelerating rate. This book will be an important aid in increasing 
recognition of the issue and its importance.

Homogenization is one outcome of an ever-increasing emphasis on the goal of 
economic efficiency, albeit it is a goal that is generally very narrowly defined. This 
goal of efficiency drives societies to move toward approaches focused upon produc-
tion of singular outcomes, such as of food or fiber, without regard to the conse-
quences to nature or to local cultures. Furthermore, these days the efforts toward 
economically efficient production of commodities are organized so as to primarily 
benefit global capital markets. This leads to such outcomes as the replacement 
(indeed, destruction) of family farms by corporate enterprises, all in the guise of 
economic efficiency. Of course, in turn this leads to practices which frequently have 
very negative effects on native biological diversity and local cultures.

This homogenization in pursuit of efficiency represents incredible threats to 
native biological and cultural diversity, if we truly care about such things. 
Homogenization is about simplification and standardization in many forms whereas 
nature and culture are about complexity and diversity. Approaches that incorporate 
complexity and diversity are not as efficient in the pursuit of many singular goals, 
such as production of food and fiber. However, approaches that conserve complex-
ity and diversity are approaches that achieve multiple rather than singular objectives 
with their activities, reduce risks from both natural and social upheavals, and 
increase future societal options.

I would venture that there are powerful, fundamentally maleficent forces that 
specifically do not value diversity and do not wish to see it conserved. Do global 
capital markets really see value in diversity, other than a diversity of portfolios? Do 
global corporations see value in  local solutions, local markets? Is there a wide 
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appreciation that the pursuit of efficiency, of homogenization, can lead to dysfunc-
tional outcomes for global societies? For example, is there real concern in the 
United States for improving the opportunities and conditions of the diversity repre-
sented by rural America? I worry a great deal about the answers to such questions 
as these.

Forests are the ecosystems that I am most familiar with, and they offer great 
examples of some of the challenges that are faced as we attempt to deal with the 
issue of biocultural homogenization. There has been a global movement toward the 
creation and management of plantations of exotic tree species in pursuit of efficient 
production of wood fiber, much of this in the southern hemisphere. In the last sev-
eral decades, this movement has been driven by global capital markets that invest in 
wood production as yet another means of seeking high returns on capital. The 
emphasis on capital return has put an economic cap on the already highly agro-
nomic approaches associated with plantation forestry. The collective consequences 
have been what I call fiber farms, which involve practices that ignore other services 
and goods that are provided by forest ecosystems as well as the stability of local 
communities and viability of other forest landownerships. The only environmental 
constraints on such practices are those that are imposed by legal authorities present 
in the regions where such plantations are grown. Usually the harvested wood goes 
to the global market that is willing to pay the most for it and not to a local wood 
processing facility, which might result in greater economic benefits for local com-
munities. Forest landowners who wish to manage for a diversity of values are chal-
lenged because they must find markets and compete in a global wood products 
economy dominated by the fiber farms.

This highly simplified, homogenized approach to wood production finds support 
in many quarters, including a globalized economy and history, and there are many 
similarities here between forestry and agriculture and fisheries. I have already talked 
about how a capital-dominated global economy favors homogenization and the 
marginalization of other forest values, except where governmental authorities insist 
otherwise. The dominant focus of the forestry profession on wood production as the 
most important use of forestland has been largely congruent with the emphasis on 
homogenization and efficiency in pursuit of a singular outcome.1 Local communi-
ties and governments are advised that the homogenized approach is in their best 
economic interest and sometimes told that this is the only real way to do sustainable 
forestry. (The same is presented regarding corporate agriculture and fish farms.) 
Forestry as a profession has failed to even conceive, let alone demonstrate to soci-
ety, credible alternatives to intensive plantation management based on clearcutting 
and even-aged management.2 The foresters have been abetted by the community of 
academic conservation biologists who argue that native biodiversity can only be 
conserved in preserves – areas that are set aside from human societies (as if such a 

1 Franklin, J. F., K. N. Johnson, and D. L. Johnson 2018. Ecological forest management. 646 p. 
Long Grove, IL, USA: Waveland Press.
2 Bennett, Brett. 2015. Plantations and protected areas. A global history of forest management.  
201 p. Cambridge, MA, USA: MIT Press.
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thing was possible in the twenty-first century!). Biodiversity will not be preserved 
primarily by separating it from humankind but, rather, must be a part of conserved 
bioculture.

This book is an important contribution to the dialogue and hard work that is ulti-
mately required to conserve as much as we can of diverse bioculture. The future of 
native biodiversity and local human societies are linked and face the same array of 
challenges. Many ideas, concepts, and examples are laid down in this volume that 
can move this important work forward. We are talking here about nothing less than 
the future of humankind – is it to be a homogenized future or one that nurtures 
diversity and the richness and resilience that it brings?

Let us all get on with it!

Emeritus Professor of Forest Ecosystems Jerry F. Franklin
University of Washington, 
Seattle, WA, USA

Foreword
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Chapter 15
Non-native Pines Are Homogenizing 
the Ecosystems of South America

Rafael A. García, Jorgelina Franzese, Nahuel Policelli, Yamila Sasal, 
Rafael D. Zenni, Martin A. Nuñez, Kimberley Taylor, and Aníbal Pauchard

Abstract A large area previously dominated by native ecosystems in South 
America is now covered by monocultures of non-native tree species, mainly of the 
genus Pinus. Currently, pine plantations and the invasions that have been generated 
from these are causing a homogenization process at the landscape, stand, and even 
micro- site scales. The continuous and extensive areas covered by pine plantations 
have replaced the native ecosystem heterogeneity in many landscapes of South 
America. Within these plantations, the diversity of plants and animals is lower than 
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that of the nearest remnant native ecosystems. These plantations can also act as a 
barrier to the movement of species across the landscape. In addition, in most places 
where pine plantations have been established, invasions have occurred into the sur-
rounding ecosystems. Overall, pine invasions are more evident in open ecosystems 
(e.g., grasslands, steppes, and degraded native forest), but they can also occur in 
denser vegetation (e.g., temperate forests). Native species loss as a consequence of 
pine invasions has been recorded in tropical, mediterranean, and temperate ecosys-
tems. Increased pine abundance and the resultant native species loss bring changes 
to all levels of organization within the ecosystem, from soil microorganisms to 
invertebrates, plants, and vertebrates. These changes reduce the ecosystem’s spatial 
heterogeneity and thus cause biotic homogenization. These biodiversity losses can 
affect the stability of ecosystems by decreasing their resilience to environmental 
change and disturbances. To mitigate the impacts caused by pines, it is important to 
implement comprehensive landscape planning, understanding that pine plantations 
coexist and interact with other land uses in a complex ecological and social 
setting.

Keywords Homogenization · Pinaceae · Invasive trees · Plant invasions · Impacts

15.1  Introduction

Pine plantations are growing in South America, and their direct and indirect effects 
on biodiversity remain uncertain. Currently, 68% of the tree plantation area added 
annually in the Southern Hemisphere (estimated in 750,000 ha year−1) occurs in 
South America (Food and Agriculture Organization 2010). On this continent, almost 
all tree plantations are based on of introduced species, and conifers, particularly 
Pinus spp., are one of the most common choices (Food and Agriculture Organization 
2010). The accelerated growth of forest plantations in South America raises con-
cerns about the risks and the potential impacts of pine plantations on biodiversity 
and ecosystem services, especially in those areas of high conservation value 
(Armesto et al. 2010). Much of the research on the biotic consequences of pine 
plantations has been conducted at landscape or even larger scales (e.g., Echeverria 
et al. 2006), where plantations have been blamed for landscape homogenization and 
replacement of native forests (Rozzi et al. 1994), as well as for changes in hydro-
logical regimes (e.g., Farley et al. 2005; Little et al. 2008). However, biotic impacts 
at smaller scales have been less studied, with local reduction of understory plant 
diversity as one of the most reported problems (Paritsis and Aizen 2008; Simonetti 
et al. 2013; Heinrichs and Pauchard 2015).

In addition to the direct impacts of pine plantations, conifers have long been 
recognized as one of the most invasive plant taxon (e.g., Richardson et al. 1994; 
Rejmánek and Richardson 1996; Ledgard 2001; Buckley et  al. 2005; Essl et  al. 
2011; Gundale et al. 2014; Nuñez et al. 2017). Pine invasive potential emerges par-
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tially from their widespread ornamental use and mainly from their extensive use for 
forest plantations (Richardson 2006; Simberloff et al. 2010; Essl et al. 2010). In 
addition, this taxon has biological attributes that increase its invasive potential such 
as high reproductive rate, fast growth, and long-distance dispersal (Rejmánek and 
Richardson 1996). Conifer invasions can have severe impacts on ecosystem pro-
cesses causing changes in water and fire regimes and reductions in local diversity 
(Simberloff et al. 2010). South America has been increasingly affected by conifer 
invasions, especially in the case of Pinus spp. (Pauchard et al. 2015), due to the high 
invasibility of the ecosystems and the novelty of the Pinaceae south of the equator 
(Lusk 2008). Nevertheless, it is only recently that researchers have started to pay 
close attention to pine invasions in South America and their effects on local biota 
(see Richardson et al. 2008).

Although the impacts of invasive pines are highly variable and depend upon the 
habitats they invade (Pauchard et al. 2015; Nuñez et al. 2017), biotic homogeniza-
tion is one of the most noticeable and consistent impacts across latitudes and conti-
nents. Two mechanisms largely explain the process of homogenization caused by 
pine invasions.

 1. An increase in the similarity between different invaded ecosystems caused by the 
dominance of a single non-native species (i.e., Pinus spp.), which usually has 
very different functional traits than the native plant communities (Pauchard et al. 
2016).

 2. Homogenization occurs as pine cover and biomass increase, and competition for 
resources causes a decrease in the abundance and diversity of the native species 
(Franzese et al. 2017; Taylor et al. 2016).

This process can develop quickly (in less than a year) in burned habitats invaded by 
pines, but in less-disturbed ecosystems, it can take multiple years or decades from 
the beginning of the invasion until the impacts on the native biota become evident 
(Franzese and Raffaele 2017). Pine invasions can have legacy impacts on plant com-
munities, even after they are removed, resulting in increases in other exotic species 
(Dickie et al. 2014). Furthermore, there is growing evidence that plant community 
homogenization is usually preceded by a biotic homogenization of animal and fun-
gal communities, either through increases in new invasive species or simplification 
of the native ecosystem (Simberloff and Von Holle 1999; Nuñez et al. 2013; Dickie 
et al. 2017).

The impacts of pine plantations and invasions in South America, and the conse-
quent biotic homogenization, are expected to increase because of continuing expan-
sion of the afforested areas (Food and Agriculture Organization 2010), as well as 
increases in invasion drivers, such as fire (Franzese and Raffele 2017), habitat deg-
radation (Echeverría et al. 2007), and grazing (Loidy et al. 2010; de Villalobos et al. 
2011). In this context, the aim of this chapter is to review the evidence of biotic 
homogenization caused by pine plantations and pine invasions on plant and fungal 
communities of South America to better understand the causes and consequences of 
this ongoing conservation problem.
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15.2  Pine Plantations Dual Effect: Homogenization 
and Invasion

Forest plantations, especially pine plantations, generate a series of economic, social, 
and environmental goods and services (Sutton 1995; Gerrand et al. 2003; Vihervaara 
et al. 2012). On the other hand, the lack of management or inadequate management 
in plantations causes negative impacts that may be more noticeable to society than 
the supposed benefits they generate (Spellerberg 1996; Aber et al. 2000; Hartmann 
et al. 2010; Salas et al. 2016). Although pine invasions and pine plantations are two 
different phenomena, it is important to understand the ecological, social, and eco-
nomic links between them, especially when addressing biotic homogenization. 
Commercial plantations are the most important promoter of pine invasions, particu-
larly in South America, and also a fundamental component of the process of biotic 
homogenization, with strong implications at landscape and local scales.

15.2.1  Landscape Homogenization

The landscape is a mosaic of different biophysical elements (natural and/or 
anthropic), and the distribution of species within the landscape is determined by the 
diversity and spatial distribution of resources in the landscape (Debinski et al. 2001; 
Hartmann et  al. 2010). A simplification of the landscape will, therefore, have a 
direct effect on the composition of animal and plant communities, as well the eco-
system services they provide (Carnus et al. 2006; Hartmann et al. 2010). Thus, the 
transformation of natural forest habitats into productive and homogenous systems, 
as a consequence of the establishment of large-scale plantations of non-native tree 
species, is one of the most direct threats to biodiversity conservation (Potton 1994; 
Larsson and Danell 2001).

In South America, a massive expansion of commercial pine plantations has 
occurred in tropical, mediterranean, temperate, and alpine ecosystems (Cubbage 
et al. 2007; Pauchard et al. 2015). This expansion has been particularly remarkable 
in the Coastal Range in central Chile, where native vegetation is composed of decid-
uous forest, with dominance by different Nothofagus species (i.e., Nothofagus 
glauca (Phil.) Krasser, N. obliqua (Mirb.) Oerst., and N. alessandrii Espinosa). This 
forest has been continuously degraded and replaced by extensive area of timber 
plantation (mostly Pinus radiata D.  Don) (Bustamante and Castor 1998; Smith- 
Ramirez 2004; Echeverria et al. 2006). In this area, 41.5% of new plantations in the 
1975–1990 period and 22.8% in the 1990–2007 period were established by clearing 
secondary native forests, which confirms that plantation expansion in Chile has 
been a direct cause of deforestation and biodiversity loss (Nahuelhual et al. 2012). 
Nevertheless, in recent years (2001–2011 period), the rate of forest conversion has 
decreased due to tighter regulations, which suggests that pressure on remaining 
native forests is beginning to ease (Heilmayr et al. 2016).
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15.2.2  Local Biodiversity Homogenization

In addition to an increase in homogenization at the landscape scale, within pine 
plantations, the diversity of species is usually much lower than in adjacent natural 
or seminatural habitats. The change of land use (direct or indirect) from forests or 
other native ecosystems to commercial plantations necessarily implies a simplifica-
tion of the structure and composition of species (Potton 1994; Spellerberg 1996; 
Freedman et al. 1996; Gjerde and Saetersdal 1997; Hartley 2002; Braun et al. 2017).

In the central zone and Chilean Patagonia, Braun et al. (2017) found a strong 
negative impact of extensive plantation forestry on plant biodiversity. The extensive 
areas of pine plantations have negative impacts on α (local), β (species turnover), 
and γ (landscape) biodiversity, where plant communities are predominantly native 
and endemic in natural forests and predominantly non-native in plantations (Braun 
et al. 2017). Furthermore, these pine crops do not serve as an alternative habitat for 
native species, leaving many species threatened by extinction (Braun et al. 2017).

A study carried out in Patagonia, which compares the structure and composition 
of Nothofagus dombeyi forests and small pine forest plantations (<5 ha), shows that 
even at the stand level the same pattern of habitat structure homogenization is 
observed (Paritsis and Aizen 2008). The largest impact was detected on understory 
plants, followed by the beetle and bird assemblages, with a reduction in evenness in 
plants and beetles, an increase of non-native plants and birds, and a loss of rare and 
specialist species in all three assemblages (Paritsis and Aizen 2008). Additionally, 
pine plantations with little or minimally developed understories contained fewer 
species of medium-sized mammals than plantations with more understory vegeta-
tion (Simonetti et al. 2013). When understory plants are present in commercial plan-
tations, they can enhance the quality of plantations as habitat for native fauna 
(mammals, birds, and insects) and even for some vulnerable species (Briones and 
Jerez 2007; Tomasevic and Estades 2008; Nájera and Simonetti 2010; Simonetti 
et al. 2013). In more tropical areas, the effects of pine plantations depend largely on 
the intensity and frequency of management actions. For instance, P. elliottii planta-
tions under low-intensity management were shown to have similar understory spe-
cies richness and diversity as native woody Cerrado formations in Brazil (Abreu 
et al. 2011), but more intense management techniques (e.g., shorter rotation, higher 
herbicide applications) would likely reduce local biodiversity. Thus, choosing the 
right management options may help to increase or at least reduce the losses of local 
biodiversity. For example, a management scheme that allows the establishment of 
well-developed understories (e.g., intensive pruning and thinning) would not only 
minimize the impact on plant diversity by providing substitute habitats for native 
species but also mitigate the effects on wildlife (Simonetti et al. 2013).
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15.2.3  Plantations as the Main Source of Pine Invasions

The different species of pines cultivated in South America have a variable level of 
invasiveness (Pauchard et al. 2015), but overall it is higher than other tree taxa. High 
invasive potential and high propagule pressure transform the pine plantations into 
the main source of invasions into native ecosystems. In fact, forest plantations 
release a large amount of seeds each year into the landscape, which increases the 
likelihood of invasion by a mass effect (Richardson and Brown 1986; Kruger et al. 
1989; Richardson and Higgins 1998). This high propagule pressure overwhelms 
microsite-scale interactions and independently explains invasion success (Pauchard 
et al. 2016). Depending on the species of pine planted (invasiveness) and the char-
acteristics of the invaded ecosystem (invasibility), invasion from the plantations can 
follow two basic patterns: continuous invasion and mosaic invasion.

Continuous invasion is frequent in open, less competitive ecosystems, as is the 
case of Pinus contorta Douglas ex Loudon in the Patagonian steppe (e.g., Langdon 
et al. 2010; Pauchard et al. 2016). The initial population growth is usually character-
ized by a dispersal kernel, where dense regeneration is located next to the seed 
source (short distance dispersal), while medium- and long-distance dispersal gener-
ates scattered outlier pines (Higgins and Richardson 1999; Richardson 2001; 
Ledgard 2003; Langdon et al. 2010). In this first stage, intraspecific competition is 
low, and therefore wildings can establish at any distance from the seed source within 
the first “invasion wave.” After some of the pines reach maturity, propagules origi-
nate from the original source, the invasion front, and the outlier trees. Once the 
second wave of invasion has started, the opportunities for successful control are 
greatly reduced, increasing the overall impacts of the invasion in the landscape 
(Fig. 15.1).

Mosaic invasion occurs in forests or other competitive vegetation (i.e., shrubs or 
grassland) with relatively stable dense vegetation cover but some spatial heteroge-
neity that includes suitable habitat for the invader. In this case, the invasion process 
is slower due to the low light availability and absence of bare soil for seedling estab-
lishment. This process is frequent in remnants of Maulino Forest in the Coastal 
Range of central Chile (Bustamante and Simonetti 2005). Today this forest covers 
only a few percent of the original area, persisting as small remnants. These remnants 
are surrounded by extensive P. radiata plantations (Bustamante and Castor 1998). 
Although seeds of pines can arrive in the interior of well-developed forest fragments 
(Bustamante and Simonetti 2005), this shaded habitat generates abiotic conditions 
which impose constraints to germination and establishment that reduce seedling 
recruitment (Bustamante et al. 2003). The permeability of these forests to the inva-
sion not only depends on the maintenance (or degradation) of the canopy layer but 
also on the size of the fragments. The fragment size seems to be a good indicator of 
susceptibility to being invaded by pines: small fragments are more susceptible to 
invasion while large fragments are more resistant (Gómez et al. 2011).
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Fig. 15.1 Example of a continuous invasion of pines into grassland environments in Patagonian 
steppe, in Coyhaique Alto, Aysen Region, Chile. Top panel: invasion core of P. contorta from 2007 
(a) to 2011 (b), 2015 (c), and 2017 (d). Bottom panel: invasion front from 2007 (e) to 2011 (f), 
2015 (g), and 2017 (h). The high dispersal capacity and rapid growth and development of pines can 
generate invasion processes with a high impact on the invaded community. In short periods of time 
(less than 10 years), complete ecosystem transformations can occur. The change from a steppe to 
a monospecific pine forest results in important changes in microclimatic conditions and availabil-
ity of resources, reduction in the richness and abundance of native plants, modification of the soil 
biota, and alteration of the trophic networks of the invaded ecosystems
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15.3  Pine Invasions and the Aboveground Biotic 
Homogenization

Most of the invasion impact studies in South American habitats are focused on the 
aboveground components of the biota (e.g., Urrutia et  al. 2013; Cóbar-Carranza 
et al. 2014; Franzese et al. 2017), with few of them focused on the belowground 
components (e.g., Chapela et al. 2001; Dickie et al. 2011; de Oliveira et al. 2014). 
This section describes work quantifying the direct impacts on aboveground biodi-
versity caused by pine invasions in different South American ecosystems.

Three pine species are currently recognized as invasive in the tropical ecosys-
tems in South America: Pinus elliottii, P. caribaea, and P. oocarpa (Braga et al. 
2014; Zenni 2015). The tropical invasive range of pines includes the Brazilian cen-
tral savanna (Cerrado) and open and degraded areas of the Atlantic Forest Biome 
(Zenni and Ziller 2011; Zenni 2015). Pine plantations in tropical regions are usually 
associated with declines in species richness and abundance in native plant regenera-
tion (Valduga et al. 2016).

In open habitats, such as grassland Cerrado and Cerrado sensu stricto, pine inva-
sions can result in massive decreases in native species richness and abundance. One 
study comparing invaded and non-invaded grassland savanna found a tenfold 
decrease in plant density (non-invaded site = 12,656 plants ha−1; invaded site = 1210 
plants ha−1) and a twofold decrease in species richness in the pine-invaded site 
(H′ = 2.82) in comparison to a non-invaded reference site (H′ = 1.53). Furthermore, 
the pine invasion completely excluded the herbaceous layer (Abreu and Durigan 
2011).

Most pines used in forestry have evolved in more temperate or colder environ-
ments, and, therefore, the southern part of South America could be more suitable for 
pine invasions. In fact, much of the Andean temperate forests of Argentina and 
Chile are characterized by a tree layer that is relatively permeable to light (e.g., open 
Araucaria araucana forest, deciduous forest of Nothofagus species); for this rea-
son, the probability of being invaded by pines is greater than in more closed forests 
(Peña et al. 2008; Simberloff et al. 2010). However, currently closed forests with 
evergreen species are also being invaded by pines, mainly by Pseudotsuga menziesii 
(Sarasola et al. 2006; Pauchard et al. 2008).

Plant diversity in open temperate forests is negatively affected by P. contorta 
invasions. Richness and cover of plants beneath pine canopies decreased with 
increasing pine size (i.e., height and canopy area) (Franzese et  al. 2017). This 
decrease did not affect all species equally, generating changes in the relative cover 
of different life-forms between invaded and non-invaded areas (Urrutia et al. 2013). 
These impacts began in the early stages of the invasion, before canopy closure, 
when the pines had a height of less than 10 m (Franzese et al. 2017). With increasing 
pine canopy closure in the invaded area, the diversity of species declined consider-
ably as a result of the decreased light availability under the tree crowns (Rodríguez- 
Calcerrada et al. 2011; Taylor et al. 2016). This evidence suggests that some impacts 
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go beyond the reduction of plant diversity and are related to a change in the 
 ecosystem functioning. In this modified ecosystem, pines not only compete for 
resources but also modify resource availability by altering microenvironmental con-
ditions. Invaded sectors have a dense and deep layer of needles (Taylor et al. 2016), 
less light availability (Fig. 15.2), and more moderate temperatures (García unpub-
lished data). The moderation of extreme conditions in these high-mountain forests 
could facilitate the arrival of new species that previously were excluded due to the 
harsh environment, thus promoting the homogenization of these unique ecosystems 
currently dominated by species adapted to these relatively harsh conditions.

Fig. 15.2 Araucaria forests in the Andes of south-central Chile with low (a, c) and high pine inva-
sion (b, d). At the ground level, the accumulation of pine needles decreases the amount of bare soil 
limiting the germination and establishment of native plants. Ground view (1 m2 plot) (top panel: a, 
b). Hemispheric canopy view (bottom panel: c, d). The pine invasions generate a more closed 
canopy with less light availability
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Temperate steppes in Patagonia can be extremely susceptible to pine invasion in 
comparison to forested habitats (Franzese et al. 2017). In a steppe of the southern 
Chilean Patagonia invaded by P. contorta, a significant reduction in plant richness 
and cover of the invaded community was registered even at early pine invasion 
stages (i.e., pines of low height and small canopy areas) (Franzese et al. 2017). As 
pine canopy cover increased, there was a strong decline in native plant richness and 
cover (Taylor et al. 2016). The abrupt modification of the habitat conditions pro-
duced by pine invasion, along with the addition of novel functional traits, could be 
acting as an ecological filter on plant biodiversity of steppe ecosystems (Bravo- 
Monasterio et al. 2016). The differential level of impact among distinct habitat types 
(forest and treeless ecosystems) could be related to how adapted the invaded com-
munity is to tree cover. This highlights the importance of context-dependency as a 
key factor in determining the overall impact of pines on diverse natural plant com-
munities (Fig. 15.3).

Although conifer invasions are regarded as a serious threat to biodiversity, infor-
mation on their impacts beyond plant communities is very limited. In fact, little is 
known about changes in invertebrate assemblages. Replacement of open native tree-
less vegetation with dense, closed, even-aged forests is by far the most striking 
impact of pine invasions (Richardson et al. 1994; Richardson and Higgins 1998). 
These changes in vegetation composition and structure result in new abiotic condi-
tions that could have cascading effects on invertebrates. Many invertebrates depend 
on particular plant species or structures for food or reproduction sites. Losses of 
these plants, or structural and/or compositional changes to the natural vegetation 
communities, may be especially detrimental for invertebrates.

Fig. 15.3 Plant species richness and abundance under invading pine trees decreases significantly 
as pine canopy area increases. Species richness (a) and cover (b) in two different habitats, temper-
ate forest (dark dots) and Patagonian steppe (white dots). The magnitude of this decrease will 
depend on the degree to which the native species are adapted to conditions similar to those created 
by the pines (e.g., level of shade tolerance). The impact of the pines is most pronounced in those 
ecosystems where shrub and grass life-forms are dominant (e.g., steppes). (Figure modified from 
Franzese et al. 2017)
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In Araucaria angustifolia moist forest of Brazil, the average richness and abun-
dance of land planarians were lower in areas invaded by pine than in uninvaded 
forests. This reduction was a consequence of the alterations in microhabitat caused 
by the accumulation of pine litter (de Oliveira et al. 2014). Pawson et al. (2010) 
examined the impact of non-native conifer density on native invertebrate assem-
blages in Pinus nigra invasions in New Zealand. They found that the effects of non- 
native conifer invasion on grassland invertebrate assemblages were strongly 
dependent on conifer density after 14 years of invasion. The relative abundance of 
major classes and orders of invertebrates was largely unaffected by conifer invasion 
at densities below 800 trees per hectare but differed in higher-density conifer stands 
(canopy cover >50%). At the species level, beetle species composition was highly 
sensitive to conifer invasion at densities as low as 400 trees ha−1. Changes in beetle 
species composition were correlated with reduced soil moisture, increased canopy 
cover, and increasing trap distance from the nearest seminatural grassland. The 
effects of conifer invasions on invertebrates may have strong ecological conse-
quences because invertebrates influence ecosystems as important links in the food 
web but also as pollinators, decomposers, and predators of pest insects (Losey and 
Vaughan 2006).

15.4  Biotic Homogenization Belowground

The potential replacement of native belowground biota by non-native invasive 
microorganisms is probably one of the most unexplored aspects of Pinaceae inva-
sions. Pinaceae trees are only able to invade if their belowground mutualists are 
present in the invaded range (Nuñez et al. 2009; Hayward et al. 2015a); therefore 
they co-invade with a group of species of ectomycorrhizal fungi (EMF) (Dickie 
et al. 2010). Once introduced, ectomycorrhizal fungi can disperse via water, wind, 
mammals, soil movement, and intentional or accidental human transport (Nuñez 
et al. 2013; Dickie et al. 2016).

Since pines were introduced to South America for forestry purposes, there have 
also been large-scale introductions of non-native ectomycorrhizal fungi (Rivera 
et al. 2015; Hayward et al. 2015b), which may cause severe ecological impacts. 
Ectomycorrhizal fungi invasion produces loss of soil carbon, movement of phos-
phorus into labile pools, and a shift toward fast nutrient cycling and bacterial- 
dominated decomposition (Chapela et al. 2001; Dickie et al. 2011). These changes 
in the soil can in turn facilitate invasion by plant species that are adapted to high- 
nutrient soils (Dickie et al. 2014). The spread and invasion of non-native fungi can 
also have cultural and social impacts, as it affects the perception of the native habitat 
by local people with a subsequent loss of sense of place (Dickie et  al. 2016). 
Economically, the introduction of new species can positively impact timber produc-
tion, and the use of novel edible fungi may emerge with commercial interest. 
However, many introduced species can also be toxic to humans that accidentally 
consume their fruiting bodies (Nuñez and Dickie 2014).
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In the invaded range, non-native ectomycorrhizal fungi interact with native biota. 
Some non-native ectomycorrhizal fungi, for example, can form novel associations 
with native plants. Some cosmopolitan ectomycorrhizal fungi species that associate 
with Pinus spp. can also be found associated with native Nothofagus spp. (Dickie 
et al. 2010). Moreover, some non-native ectomycorrhizal fungi, such as Amanita 
muscaria, have been found to be spreading into native forests associated with native 
tree species (Orlovich and Cairney 2004; Dickie and Johnston 2008). The mecha-
nisms underlying this process, together with the impact of these novel associations, 
are still uncertain. In any case, beta diversity of the belowground communities 
decreases, as the arrival of these species of cosmopolitan ectomycorrhizal fungi 
associated with pines increases similarity between different communities. There is 
also evidence that native ectomycorrhizal fungi generally do not associate with pine 
species (Dickie et al. 2010; Gundale et al. 2016). Intrinsic ectomycorrhizal fungi 
species traits define their invasion success and probably are involved in the interac-
tion with native biota. Some non-native ectomycorrhizal fungi, for example, per-
form better in the invasion front due to high spore resistance, long-distance dispersal, 
and high spore production. Although these groups of ectomycorrhizal fungi allow 
pines to establish, they are then outcompeted by late-successional non-native spe-
cies (Peay et al. 2010). If and how these sets of non-native species interact with each 
other and with native ectomycorrhizal fungi are still not clear. We also have limited 
information about whether non-native fungi replace native ectomycorrhizal fungi, 
but this is clearly a possibility (Nuñez and Dickie 2014), which would have a direct 
impact on plant species composition. Given the above information, there is suffi-
cient evidence to suggest that the spatial complexity of ectomycorrhizal fungal 
communities has implications for forest succession, expansion, and invasion dynam-
ics (Dickie and Reich 2005).

Undoubtedly, there is a clear need to shed light onto the mechanisms by which 
simplification of the belowground community could occur. More work is needed to 
fully understand how non-native ectomycorrhizal fungi could influence the rate of 
species spread and the resistance of the community to future invasions, in addition 
to altering a much wider range of ecosystem processes such as soil respiration and 
soil carbon stocks.

15.5  Conclusions

Due to the wide latitudinal and climatic gradient present in South America, there is 
a great variety of ecosystems and species, with high endemism and very limited 
distributions. The addition of large areas planted with non-native conifer species 
represents an important driver of biodiversity loss in these areas. Currently more 
than ten million hectares are covered by a small subset of non-native tree species, 
mainly of the Pinaceae family. Additionally, an undetermined area is being invaded 
by pines, generating a homogenization process at landscape, stand, and even micro-
site scales, causing ecosystem consequences across trophic levels.
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The planted and invading pines are perceived by society, in most cases, as trans-
forming agents of the landscape. The extensive and homogeneous areas planted 
with pines are seen as antagonistic to the diverse and increasingly threatened native 
ecosystems. Currently across South America, it is possible to attribute 
 homogenization at the landscape scale to the expansion of commercial plantations. 
However, land use change is a much more complicated process dominated by con-
stant degradation and deforestation of native forest (e.g., agricultural expansion, 
fires, forest substitution, firewood extraction) generally resulting in a final state of 
plantations; however, plantations are not always the initial drivers of this change 
(Echeverria et al. 2006; Nahuelhual et al. 2012). Thus, comprehensive landscape 
planning is required to maintain landscape heterogeneity and conserve the remain-
ing patches of native ecosystems.

Pine invasions initiate largely from pine plantations. Therefore, recognizing that 
pine plantations provides a series of goods and services (such as wood, fiber, and 
fuel), there is now a pressing need to develop practices oriented toward avoiding 
negative externalities, such as invasion of native ecosystems. Non-native conifer 
plantations are an undeniable source of propagules that cause invasion in natural 
ecosystems, even in protected areas, with all the problems for biodiversity conserva-
tion that follow from these invasions. Most of the cultivated pine species have the 
potential to become invasive (Pauchard et  al. 2015; Nuñez et  al. 2017), but we 
should avoid planting those with the highest invasive potential (Rejmánek and 
Richardson 1996) or with international evidence of becoming invasive. Appropriate 
management strategies need to be developed inside and outside pine plantations in 
order to prevent or reduce impacts on local biodiversity (Pauchard et al. 2015; Braun 
et al. 2017; Nuñez et al. 2017). Less dense plantations with a well-developed under-
story are key to increasing diversity within plantations, as well as allowing species 
to disperse across the landscape. On the other hand, the establishment of pines out-
side the plantations should be avoided by controlling wildings, especially in riparian 
zones and open ecosystems.

Homogenization generated from pine invasion in natural areas is a gradual pro-
cess, which can take years or decades, but it is inevitable if timely control measures 
are not taken. In the early stages of pine invasion, there is a reduction in the abun-
dance of some native plant species associated with increased of canopy cover 
(Urrutia et al. 2013; Franzese et al. 2017) and a restructuring of the soil fungal com-
munities initiated by the arrival of ectomycorrhizal fungi associated with the pines 
(Nuñez and Dickie 2014). In later invasion stages, changes occur in plant commu-
nity composition resulting from the inevitable loss of native species (Abreu and 
Durigan 2011; Bravo-Monasterio et al. 2016). This homogenization, as a result of 
the loss of native species and the increase in pine abundance, brings changes to all 
levels of organization within the ecosystem, which can be permanent, giving rise to 
a novel habitat. Furthermore, this biodiversity loss can affect the stability of ecosys-
tems by decreasing the ability of communities to respond to environmental change 
and disturbances (Gámez-Virués et al. 2005).

One of the current challenges in biodiversity conservation lies in how to deal 
with the synergy of factors that promote ecosystem homogenization. Wildfires and 
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invasions could generate a positive feedback (Brooks et  al. 2004; Mandle et  al. 
2011), speeding up the process of biodiversity homogenization in degraded ecosys-
tems. Positive feedbacks between fire and invasion of pines adapted to fire (i.e., 
serotinous pines; e.g., Taylor et al. 2017) can be a major cause of unidirectional 
changes in natural ecosystems (Simberloff et al. 2010; Veblen et al. 2011), espe-
cially in those which have not evolved under a high fire frequency (Brooks et al. 
2004). The main effect of invasive pines on fire risk in natural forests is related to 
higher flammability and fuel continuity, although over time it is expected that the 
amount of fine fuel could also increase (Cobar-Carranza et al. 2014). In steppe sys-
tems, invasive pines contribute to greatly elevated fuel loads in invaded areas (Taylor 
et al. 2017). In mediterranean and temperate ecosystems, the number and severity of 
wildfires are expected to increase in the future due to the current scenario of climate 
change, coupled with an increase in human activity, and the large concentration of 
pine plantations (Peña and Valenzuela 2008; McWethy et al. 2018). In the summer 
of 2017, more than 100,000 ha of native forest burned just within Chile, in sectors 
dominated by pine plantations (CONAF 2017) or with evidence of pine invasion 
(Bustamante and Simonetti 2005; Gómez et al. 2011). If a timely restoration and 
control of post-fire pine regeneration are not performed in these zones, it is expected 
that vegetation composition will be drastically modified and dominated by pines. 
This highlights the importance of analyzing the traits of the pine species that are 
proposed for introduction into natural areas and discouraging the use of those spe-
cies whose abundances would likely be promoted by disturbances such as fire 
(Franzese and Raffaele 2017).

To mitigate future impacts caused by pines, and other tree plantations, it is 
important to develop a comprehensive landscape plan, understanding that pine plan-
tations coexist and interact with other land uses, productive and non-productive, 
and, therefore, the management of these plantations must be implemented in accor-
dance with the social and ecological context in which they are located. Along the 
same lines, the reduction of large areas planted with a single objective and manage-
ment strategy is crucial to reduce landscape homogenization and other negative 
impacts associated with intensive and extensive management of tree monocultures.
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